Technical Note

Project:	Brandhall Urban Village	Job No:	$\mathbf{6 0 6 5 3 8 1 7}$
Subject:	Surface Water Drainage Strategy - Options1 to 4		
Prepared by:	Luke Palmer	Date:	$\mathbf{1 2 . 0 5 . 2 2}$
Checked by:	David Mulkerrin	Date:	$\mathbf{1 7 . 0 5 . 2 2}$
Approved by:	Claire Parkinson	Date:	$\mathbf{1 7 . 0 5 . 2 2}$

Background

AECOM has been requested by Sandwell Metropolitan Borough Council (SMBC) to review the potential surface water drainage strategy for four development options for the proposed Brandhall Urban Village site. The options are as follows:

Option 1

Retain as a park (No change to existing situation) so no drainage strategy required

Option2

Development of a 2 form entry primary school to the north west of the site, retention of remainder of the site as a park.

Option 3

Development of a 2 form entry primary school to the north west of the site plus residential development (up to 190 units) to the east of the site (Parcels R1 and R2) and retention of remainder of the site as a park.

Option 4

Development of a 2 form entry primary school to the north west of the site plus residential development (up to 360 units) including parcels R1, R2, R3 and R4 with retention of remainder of site as a park.

Surface Water Drainage Strategy

This technical note should be read in conjunction with the following drawings, included as Appendix A:
Brandhall Drainage Strategy - Option 2, drawing reference 60653817-CIV-002
Brandhall Drainage Strategy - Option 3, drawing reference 60653817-CIV-003
Brandhall Drainage Strategy - Option 4, drawing reference 60653817-CIV-004

Assumptions

This strategy has been developed to assist in decision making regarding the proposed development proposals at the Brandhall Urban Village site. At this stage, no consultation has been undertaken with the Lead Local Flood Authority or the Environment Agency regarding design requirements for this particular site, therefore the strategy is subject to change.
It is assumed, at this stage, that infiltration techniques are unsuitable at this site, however this should be confirmed by soakage testing.
When preparing this high-level drainage strategy we have assumed that all of the required attenuation volume will be contained within a basin/pond prior to discharge into the Brandhall Brook, to identify the potential land take associated with these features.
To calculate the attenuation volumes we have carried out an assessment using discharge rates equivalent to greenfield rates of runoff restricted to QBar. These discharge rates have been used to determine the attenuation requirements for the 1 in 100 year storm event $+30 \%$ climate change allowance, based on
guidance provided within ‘The Black Country Authorities Level 1 Strategic Flood Risk Assessment, dated 25 ${ }^{\text {th }}$ June 2020. There is currently no allowance for development creep in the calculations.
It should be noted that this assessment has been carried out using FSR rainfall data. However, the LLFA may request the use of FEH data (to be purchased) which may increase the attenuation volumes required.
For the purpose of this assessment, it has been assumed that the primary school site will be 50% percentage impermeable (PIMP), the residential development parcels will be 65\% PIMP.
The indicative pond size as shown on the drainage strategy option drawings is based on attenuating the QBar volume in a pond with a depth of 1.5 m . There will be a requirement to provide freeboard during detailed design, typically this is 300 mm , so the max. water depth will be 1.2 m . The earthworks associated with the ponds have not been included in the overall area at this stage.

The development of the drainage strategy would refine the design of the attenuation features required for each catchment, with input from landscape architects.
As a drainage strategy for the preferred option is developed further, we would recommend that SuDS are also incorporated within the development parcels using a range of techniques, including: green/blue roofs, bio-retention areas, swales, ponds and permeable paving.

Option 2 - Primary school

The proposals identify the construction of a new 2 form entry primary school located in the north-west of the Brandhall development site.
The area is steeply sloping with a ground level of approximately 189 mAOD in the south, falling away to the north and the east. The eastern edge of the development site is at approximately 180 mAOD , the northwestern boundary of the site is at approximately 185.5 mAOD . The site has been divided into two catchments reflecting the current topography.
Catchment A - Development Area of 0.78 ha , and impermeable area of 0.39 ha . Storage volume required 293 m 3 . Storage shown as a pond/basin within the north-western corner of the development site. Discharge from this catchment requires further assessment, it may be appropriate to connect into the existing surface water sewer.
Catchment B - Development Area of 1.90ha, and impermeable area of 0.95 ha . Storage volume required 713 m 3 . Storage shown as a basin/pond located to the east of the development. Earthworks will be required to form the pond within the sloping ground. Two potential outfall options are shown, either north to an existing ditch, which connects into the brook at the north of the site, or east directly into the brook.

Option 3 - Primary school and Residential Development R1 and R2

The proposals identify new 2 form entry primary school, and an area of residential development located in the east of the site.
Primary school - see Option 2 above.
Residential Parcel $R 1$ is steeply sloping with a high point in the south of the site at 190 mAOD , falling away to the east (181 mAOD), north (185 mAOD and west (186 mAOD).
Development area of 3.29 ha , impermeable area of 2.14 ha . Storage volume required $1,607 \mathrm{~m} 3$.
As a result of the topography, it is likely that the site would be divided into three sub-catchments, with separate attenuation for each. The Drainage Strategy Option 3 drawing identifies three areas of storage outside of the development parcels, and also outside of the current flood envelope. Earthworks will be required to form the pond within the sloping ground. All three areas would discharge directly to the brook.
Residential Parcel R2 is steeply sloping with a high point in the south of the site at 196 mAOD , falling away to the north-east (185 mAOD).
Development area of 1.803 ha , impermeable area of 1.17 ha . Storage volume required 879 m 3 .

As a result of the topography, it is likely that the site would be one large catchment, although the attenuation may be separated due to topographical constraints. The Drainage Strategy Option 3 drawing currently identifies one storage area located directly to the north-east of the development site, and a further larger storage area directly north of the development parcel. This location is constrained due to the steep topography, the location of the brook and flood envelope, and also the proposed pedestrian site access. Earthworks will be required to form the pond(s) within the sloping ground. Any attenuation pond would discharge directly to the brook.

Option 4 - Primary school and Residential Development R1, R2 and R3, R4

The proposals identify new 2 form entry primary school, and an area of residential development located in the east of the site.

Primary school - see Option 2 above.
Residential Parcel R1 and R2-See Option 3 above.
Residential Parcel R3 is steeply sloping with a high point in the south of the site at 195 mAOD , falling away to the north (184 mAOD).

Development area of 2.124ha, impermeable area of 1.38 ha . Storage volume required $1,036 \mathrm{~m} 3$.
As a result of the topography, it is likely that the site would be one large catchment, with attenuation located remote from the development parcel, at a lower level on the site closer to the brook. The Drainage Strategy Option 4 drawing identifies an open channel connecting the development to the attenuation basin/pond which then discharges into an existing pond on the site. Earthworks will be required to form the pond within the sloping ground.
Residential Parcel $R 4$ is steeply sloping with a high point in the south of the site at 191.5 mAOD , falling away to the east (187mAOD).

Development area of 1.871 ha, impermeable area of 1.22 ha . Storage volume required 915 m 3 .
As a result of the topography, it is likely that the site would be one large catchment, with attenuation located remote from the development parcel, at a lower level. The Drainage Strategy Option 4 drawing identifies an open channel connecting the development to the attenuation basin/pond which then discharges into an existing pond on the site, also via an open channel. Earthworks will be required to form the pond within the sloping ground.

Conclusions

A high-level drainage strategy has been developed for Options 2, 3 and 4 for Brandhall Urban Village. The purpose of the strategy is to identify the potential volumes of surface water that require attenuation for each development parcel, and the likely area required to accommodate this run-off water within the site.
The purpose of the on-site attenuation is to restrict the surface water run-off from the development parcels to greenfield rates. This would aim to mimic the current scenario and will not increase the risk of flooding at the site, or downstream of the site. The development of the drainage strategy should be undertaken in conjunction with the flood risk assessment.
Based on the preferred development option, the drainage strategy will be developed further to refine the attenuation required, and to understand the earthworks required to form attenuation features within the existing sloping topography.
The design approach will need to be discussed with the Lead Local Flood Authority or the Environment Agency, and is therefore subject to change.

Appendix A - Drainage Strategy Option Drawings

